Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles

Engineered nanoparticles (ENPs) are being extensively used in a great variety of application with a pace that is increasingly growing. The evaluation of the biological effects of ENPs is of outmost importance and for that experimental and most recently computational methods have been suggested. In an effort to computationally explore available datasets that will lead to ready-to-use applications we have developed and validated a QNAR model for the prediction of the cellular uptake of nanoparticles in pancreatic cancer cells. Our insilico workflow was made available online through Enalos InSilicoNano platform (http://enalos.insilicotox.com/QNAR_PaCa2/), a web service based solely on open source and freely available software that was developed with the purpose to make our model available to the interested user wishing to generate evidence on potential biological effects in the decision making framework. This web service will facilitate the computer aided nanoparticles design as it can serve as a source of activity prediction for novel nano-structures. To demonstrate the usefulness of the web service we have exploited the whole PubChem database within a virtual screening framework and then used Enalos InSilicoNano platform to identify novel potent nanoparticles from a prioritized list of compounds.

 

Relevant Publication: Georgia Melagraki, Antreas Afantitis Enalos InSilicoNano Platform: An online decision support tool for the design and virtual screening of nanoparticles RSC Advances 2014, 4, 50713-50725 2014 (link)